Tough Ramsey Graphs Without Short Cycles

نویسنده

  • NOGA ALON
چکیده

A graph G is t-tough if any induced subgraph of it with x > 1 connected components is obtained from G by deleting at least tx vertices. It is shown that for every t and g there are t-tough graphs of girth strictly greater than g. This strengthens a recent result of Bauer, van den Heuvel and Schmeichel who proved the above for g = 3, and hence disproves in a strong sense a conjecture of Chvatal that there exists an absolute constant t0 so that every t0-tough graph is pancyclic. The proof is by an explicit construction based on the tight relationship between the spectral properties of a regular graph and its expansion properties. A similar technique provides a simple construction of triangle-free graphs with independence number m on £2(m4/3) vertices, improving previously known explicit constructions by Erdos and by Chung, Cleve and Dagum.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

All Ramsey (2K2,C4)−Minimal Graphs

Let F, G and H be non-empty graphs. The notation F → (G,H) means that if any edge of F is colored by red or blue, then either the red subgraph of F con- tains a graph G or the blue subgraph of F contains a graph H. A graph F (without isolated vertices) is called a Ramsey (G,H)−minimal if F → (G,H) and for every e ∈ E(F), (F − e) 9 (G,H). The set of all Ramsey (G,H)−minimal graphs is denoted by ...

متن کامل

Recognizing tough graphs is NP-hard

We consider only undirected graphs without loops or multiple edges. Our terminology and notation will be standard except as indicated; a good reference for any undefined terms is [2]. We will use c(G) to denote the number of components of a graph G. Chvtital introduced the notion of tough graphs in [3]. Let t be any positive real number. A graph G is said to be t-tough if tc(G-X)5 JXJ for all X...

متن کامل

Generalized Ramsey Theory for Multiple Colors

In this paper, we study the generalized Ramsey number r(G, , . . ., Gk) where the graphs GI , . . ., Gk consist of complete graphs, complete bipartite graphs, paths, and cycles. Our main theorem gives the Ramsey number for the case where G 2 , . . ., G,, are fixed and G, ~_C, or P,, with n sufficiently large . If among G2 , . . ., G k there are both complete graphs and odd cycles, the main theo...

متن کامل

Planar Ramsey Numbers for Small Graphs

Given two graphs G1 and G2, the planar Ramsey number PR(G1, G2) is the smallest integer n such that every planar graph on n vertices either contains a copy of G1 or its complement contains a copy of G2. So far, the planar Ramsey numbers have been determined, when both, G1 and G2 are complete graphs or both are cycles. By combining computer search with some theoretical results, in this paper we ...

متن کامل

Tough spiders

Spider graphs are the intersection graphs of subtrees of subdivisions of stars. Thus, spider graphs are chordal graphs that form a common superclass of interval and split graphs. Motivated by previous results on the existence of Hamilton cycles in interval, split and chordal graphs, we show that every 3/2-tough spider graph is hamiltonian. The obtained bound is best possible since there are (3/...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995